
Remote Memory 

Access
A deeper look at RMA



Outline

• Additional MPI RMA concepts

- Synchronization modes

- Types of epoch

- Memory model

• The other two MPI synchronization calls

- Post-Start-Complete-Wait (PSCW)

- Locking and unlocking

• Some useful MPI-3 extensions

- Request handles

- Dynamic windows

2



Additional MPI RMA concepts

Synchronisation modes, epochs types and memory model

3



Synchronization modes

• Active target

- Both processes are explicitly involved in the data movement. Only 

one process issues the data transfer call but all processes issue 

the synchronisation.

• Passive target

- Only the origin process is involved in the data movement, there are 

no calls made on the target process. For instance two origin 

processes might communicate by accessing the same location in a 

target window, and the target process (which does not participate) 

might be distinct from the origin processes.

Fence is an example of active target as each process issues the 

fence calls

4



Epoch types

• Access epoch

- RMA communication calls (get, put etc) can only be issued inside 

an access epoch. This is created by starting the epoch and 

completed by stopping the epoch.

- I.e. it is used to access the remote memory of another process. 

• Exposure epoch

- Used in active target communication, this is required to expose 

memory on the target so it can be accessed by other processes’ 

RMA operations.

Fences abstract the programmer from this as they will complete/start 

both access and exposure epochs automatically as required 

5



RMA Memory model

• Public and private window copies

- Public memory region is addressable by other processes (i.e. 

exposed main memory)

- Private memory (i.e. transparent caches or communication buffers) 

which is only locally visible but elements from public memory might 

be stored.

• Coherent if updates to main memory are automatically 

reflected in private copy consistently

• Non-coherent if updates need to be explicitly 

synchronised

6



RMA Memory model
• MPI therefore has two models

- Unified if public and private copies are identical – used if possible, realistic 
on cache coherent machines. (This was added in MPI v3)

- Separate if they are not, here there is only one copy of a variable in 
process memory but also a distinct public copy for each window that 
contains it. The old model

Public window copy

Public window copy

Process memory

• In the separate model a suitable 

synchronisation call (i.e. end of an 

epoch) must be issued to make these 

consistent. In the unified model some 

synchronisation calls might be 

omitted for performance reasons

• The window attribute tells you which 

model it follows

Put Get

Local 

write

Local 

read
Illustration of separate model

7



AMPP Lecture stops here!

• Additional slides included for completeness

• All you need to know:

- you can do point-to-point synchronisation in MPI RMA as well as 

global synchronisation with fences

• it is called “Post-Start-Complete-Wait” - PSCW

• you do not need to know any more details than this!

- you can lock windows

• this is called “passive target synchronisation” as the target process does 

not need to make any RMA calls

• model is something like: lock / put / unlock

• you do not need to know any more details than this!

8



The other two synchronization calls

Post-start-complete-wait and locking & unlocking

9



Post-start-complete-wait (PSCW)
• The programmer explicitly handles different types of 

epoch
- post creates an exposure epoch, wait ends an exposure epoch

- start creates an access epoch, complete ends an access 
epoch

• Groups of processes are provided to post and wait 
calls to support synchronising over a subset of processes 
in the communicator. Assertions also provided if you want.

• post will not block, start may or may not block

• wait will block until all matching complete calls and 
guarantees target RMA completion

• complete will block until RMA communications of that epoch 
have completed and guarantees origin RMA completion

10



Post-start-complete-wait (PSCW)

These can overlap, i.e. you can have 

an exposure epoch and also create an 

access epoch. Remember wait will 

block for its matching complete, so you 

must have complete and then wait

Dashed arrows illustrate 

synchronization, solid 

arrows data transfer

11



PSCW example
int ranks[]={0,1,2};

if (rank == 0) {

MPI_Win_create(buf, sizeof(int)*3, sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &win);

} else {

MPI_Win_create(NULL, 0, sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD,

&win);

}

if (rank == 0) {

MPI_Group_incl(comm_group, 2, ranks+1, &group);

MPI_Win_post(group, 0, win);

MPI_Win_wait(win);

} else {

MPI_Group_incl(comm_group, 1, ranks, &group);

MPI_Win_start(group, 0, win);

MPI_Put(buf, 1, MPI_INT, 0, rank, 1, MPI_INT, win);

MPI_Win_complete(win);

}

Group contains 

ranks 1 and 2

Start exposure epoch

Stop exposure epoch

Group contains rank 0

Start access epoch

Stop access epoch

Based on an example at 

cvw.cac.cornell.edu/MPIoneSided/pscw

12



Locks and unlocks

• PSCW is an example of active target synchronisation as 

the target must still explicitly create an exposure epoch

• Locks/unlocks are an example of passive synchronisation 

where only the origin takes part.
int MPI_Win_lock(int lock_type, int rank, int assert, 

MPI_Win win)

int MPI_Win_unlock(int rank, MPI_Win win)

• Inside the epoch (i.e. between lock & unlock) then RMA 

communication calls as normal, these complete for both 

the origin and target on the corresponding unlock.

Starts an access epoch

Stops the access epoch

13



Locks and unlocks
• The lock type argument to lock is either:
- MPI_LOCK_SHARED where multiple processes may access the 

target window at any one time

- MPI_LOCK_EXCLUSIVE where only one process may access the 
target window at any one time

• MPI 3 also added lock_all and unlock_all variants 
which control access to all processes associated with a 
window.

• There is also 
- flush to flush outstanding RMA operations on the window to the 

target rank

- sync to synchronise public & private window copies (separate 
memory model)

14



Lock and unlock example
MPI_Win win;

if (rank == 0) {

MPI_Win_create(NULL,0,1,MPI_INFO_NULL,MPI_COMM_WORLD,&win);

MPI_Win_lock(MPI_LOCK_SHARED,1,0,win);

MPI_Put(buf,1,MPI_INT,1,0,1,MPI_INT,win);

MPI_Win_unlock(1,win);

MPI_Win_free(&win);

} else {

MPI_Win_create(buf,2*sizeof(int),1, MPI_INFO_NULL, 

MPI_COMM_WORLD, &win);

MPI_Win_free(&win);

}

Based on an example at 

cvw.cac.cornell.edu/MPIoneSided/lul

Start access epoch

Stop access epoch

Communication call

15



Some other MPI v3 extensions

Request handles, dynamic windows

16



Request handles
• There is also an R variant of all communication calls 

which associate a request handle with the operation

- i.e. Rget, Rput and Raccumulate

- Importantly only valid in passive target synchronisation

• This request handle is then used as you would any other 
request handle (you can call MPI_test, MPI_wait etc

on it.) 

• Tracks origin’s RMA completion only.

- For a put/accumulate guarantees that the origin’s buffer can be 

overwritten (but not that data has arrived)

- For a get guarantees that data is available in the origin’s buffer

- Different to an unlock or a flush in this respect

17



Dynamic windows

• Traditional windows allocation required that memory is 

attached at window creation

- But what if we don’t know the amount of memory needed at that 

point?

• Dynamic windows allow memory can be exposed without 

additional synchronisation
int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,

MPI_Win *win)

• Memory is then attached with
int MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)

• Detached with
int MPI_Win_detach(MPI_Win win, const void *base)

18



Dynamic windows

• Memory being attached can not overlap with any other 

memory that is already attached

• The target displacement argument of the origin’s 

communication call is the address at the target

- You can use MPI_Get_Address on the target to retrieve this

• Must ensure that the memory has been attached on the 

target process before the origin issues any RMA calls 

referencing it

19



Summary

• We have covered a large proportion of the RMA calls
- All the underlying concepts

- All three synchronisation mechanisms

- There are some additional, less frequently used communication calls and 
window management functions.

- There are a number of rules related to correctness where you can omit explicit 
synchronisation calls for unified windows. We have covered a “safe” approach 
here which works fine for both types.

• Many resources available online
- MPI version 3 standard is very comprehensive

- https://cvw.cac.cornell.edu/MPIoneSided is a good resource

- https://htor.inf.ethz.ch/publications/img/mpi3-rma-overview-and-model.pdf

- http://www.mpich.org/static/docs/v3.2/www3/

• You will get best experience of this by considering the applicability of 
RMA to your existing codes

20

https://cvw.cac.cornell.edu/MPIoneSided
https://htor.inf.ethz.ch/publications/img/mpi3-rma-overview-and-model.pdf
http://www.mpich.org/static/docs/v3.2/www3/

